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Abstract
Interpretation of the result of a diagnostic test depends not only on the actual test result(s) but also on information external to this

result, namely the test’s sensitivity and specificity. This external information (also called prior information) must be combined with

the data to yield the so-called updated, posterior estimates of the true prevalence and the test characteristics. The Bayesian approach

offers a natural, intuitive framework in which to carry out this estimation process. The influence of the prior information on the final

result may not be ignored. Guidance for the choice of prior information not in conflict with the data can be obtained from a set of

statistics and indices (DIC, pD, Bayes-p).
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1. Introduction

The Reverend Thomas Bayes lived from 1702 to

1761. He was the son of a Nonconformist minister and

was educated privately, rumour having it that one of his

teachers was the French statistician Abraham de

Moivre, who had previously ‘discovered’ the normal

distribution. Thomas Bayes in turn was also ordained

minister. He remained interested in mathematics,

probability theory and statistics throughout his life.

We now know Bayes’ ideas on statistics mainly through

two posthumously published papers (Bayes, 1763;

Price, 1764). The first paper contains the solution to a

problem posed by de Moivre in his Doctrine of Chances

in 1718, hence the paper’s title.

Bayes is thought to be the first to use probability

theory inductively. He developed the mathematical

basis for probability inference, which is a method to
* Corresponding author. Tel.: +32 3 2476393; fax: +32 3 2476268.

E-mail address: dberkvens@itg.be (D. Berkvens).

0304-4017/$ – see front matter # 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.vetpar.2007.05.010
calculate the probability that an event will occur in the

future, based on the frequency with which this event has

occurred in the past. According to Bayes, all quantities

involved in inference belong to two kinds: those known

and those unknown to the person making the inference.

The first kind will enter the inference with its known

(accepted) values. The second kind enter the equation as

probability distributions reflecting expert opinion,

making the Bayesian view thus a completely new

way of looking at statistics (Johnson and Kotz, 1997).

Bayes’ views went largely unnoticed being cited

without challenge (by, among others, Laplace) until

Boole questioned them (Boole, 1854). The controversy

continued until they were completely discredited by

early 20th century statisticians. It was only during the

1950s that Bayesian statistics were rediscovered

through the efforts of statisticians, econometricians

and physicians, increased computational power

undoubtedly aiding this resurrection. The statisticians

(among them De Finetti, Jeffreys, Savage and Lindley)

developed a complete method of statistical inference

based on Bayes’ theorem (Bolstad, 2004).
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2. Bayes’ theorem

Bayes’ theorem or Bayes’ formula introduces

inverse probability to be used when calculating the

probability of antecedent events based on the occur-

rence of consequent events. Think of the antecedent

event as the point in time when the animal became

infected and the consequent event as the result of a

diagnostic test carried out at a later point in time.

‘Infected’ is used in the most general sense of the word

and may be replaced by ‘infested’, ‘diseased’, ‘carrier’

or whatever term to distinguish this animal (a case) from

a non-case.

The actual Bayes’ formula is:

PðAntejConsÞ ¼ PðConsjAnteÞ � PðAnteÞ
PðConsÞ

with Ante = having become infected; Cons = positive

test result or, in terms of infection and test result:

PðDþjTþÞ ¼ PðTþjDþÞ � PðDþÞ
PðTþÞ

where Dþ refers to ‘being infected’ and Tþ to ‘a

positive test result’. The formula thus calculates the

probability that a particular animal is infected given a

positive test result. In the latter form, it becomes clear

that this formula is what is commonly known in epi-

demiology as the predictive value of a positive test

result and it is indeed exactly what inverse probability

signifies: what is the probability that an animal was

infected previously, given a positive test result now?

Bayes’ theorem is thus in fact a commonly used tool

when having to decide whether or not to classify an

animal as infected or not.

In order to appreciate how Bayes’ formula calculates

this after-test probability, we can replace the various

probabilities by better known terms.

As mentioned before PðDþjTþÞ refers to the

predictive value of a positive test result (PVþ).

PðTþjDþÞ represents the probability of a positive test

result given an infected animal, a conditional prob-

ability known as the sensitivity of the diagnostic test

(Se). PðDþÞ is the probability that any randomly chosen

animal from a population is infected, a population

parameter known as the true prevalence of infection ( p).

Lastly, PðTþÞ stands for the probability of obtaining a

positive test result, irrespective of the actual status of the

animal. This probability is the proportion of positive test

results obtained when testing a certain number of

animals and is known as the apparent prevalence, or

seroprevalence or laboratory prevalence ( p0). The

probability of a positive test result ( p0) is the sum of
the probability of a positive test result given an infected

animal (prevalence times sensitivity) and the prob-

ability of a positive test result given an uninfected

animal (probability of not being infected, or 1 �
prevalence, times lack of specificity, or 1 � Sp). PVþ

thus becomes:

PVþ ¼ Se � p

p0

PVþ ¼ Se � p

Se � pþ ð1� SpÞ � ð1� pÞ

3. Prior information, data likelihood and

posterior information

Prior information, data likelihood and posterior

information are terms commonly used in Bayesian

analysis (Congdon, 2003) and they are best explained

using the previous example of testing an infected

animal.

Prior information refers to our knowledge about the

parameter of interest (i.e. the probability that an animal

is infected) without the test being performed. Our best

guess concerning the probability of infection when

selecting an animal at random from a population is the

prevalence and this parameter represents our prior

knowledge (or belief, or degree of belief) about the

probability of infection in any animal in that popula-

tion. This prior information can be an exact value, a

range of values, an expert opinion, a probability

distribution,. . .
The data likelihood is embodied by the (conditional)

probability of a positive test result, given in the first

place the test sensitivity, but also the prevalence of the

infection and the lack of specificity of the test.

Combining the prior information and the data

likelihood yields the posterior information, namely

the updated probability of the tested animal being

infected, given the fact that it yielded a positive test

result. This new, updated probability corresponds to our

update or post-test belief in the chances that the animal

is truly infected.

4. Information inherent to the data and

information external to the data

The previous section already hinted that some

information, essential for arriving at a meaningful

decision when applying a diagnostic test to an animal, is

actually not contained in the test results (i.e. is external

to the data).
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This is easier to understand if we extract the

prevalence ( p) from the formula for apparent pre-

valence

p0 ¼ p � Seþ ð1� pÞ � ð1� SpÞ

thereby obtaining the Rogan–Gladen estimator (Rogan

and Gladen, 1978) of the true prevalence

p ¼ p0 þ Sp� 1

Seþ Sp� 1

We need to estimate three parameters if we want to

estimate the true prevalence, namely the apparent

prevalence ( p0), the test sensitivity (Se) and the test

specificity (Sp). The data (the test results) contain only

information about the first parameter. The apparent

prevalence is estimated as the number of positive test

results divided by the number of animals tested.

Information about the two other parameters is not

present in the data and has to be supplied independently

from and external to the data. The value of the test

sensitivity and test specificity has to be obtained either

from other data (experimental results, other studies,. . .)
or, in the absence of data, from expert opinion.

A Bayesian analysis allows us to combine this

external information (i.e. prior information) with the

data to yield an estimate. It immediately becomes clear

that our conclusion (prevalence estimate or predictive

value of a test) is the result of both the data and the prior

information, in other words the result of our prior

beliefs and the new evidence. Bayesian analysis allows

us to assign probability distributions to our prior beliefs

and combine these with the data likelihood to yield a

posterior probability distribution representing our

updated belief.

The important point here is that test sensitivity and

test specificity actually also have become variables. In

the classic approach test sensitivity and specificity are

fixed parameters and the true prevalence is calculated

from them, using the above mentioned Rogan–Gladen

formula. The only variable in the system is the apparent

prevalence. But, test sensitivity and specificity are in

fact variables, their value being independent of the data

at hand and the value used in the equation being based

entirely on expert opinion: the person (or persons)

transforming the apparent prevalence into a true

prevalence decide what values to use, it is their chosen

values that determine the outcome. The fact that test

sensitivity and specificity are variables is completely in

line with the Bayesian spirit, where indeed a distinction

between variables and parameters ceases to exist and

where instead we deal with known and unknown

variables, information about the former being found in
the data, the latter’s value being decided upon by the

experts. The fact that this is in truth also the case in real

life is often not realised, overlooked or even con-

veniently ignored.

The bottom-line is that any change in the value of

either test sensitivity or test specificity inserted into the

Rogan–Gladen equation immediately alters the esti-

mate of the true prevalence, i.e. the true prevalence

estimate is conditional not only on the data, but also on

the expert opinion.

Another way of looking at this problem is to observe

that the number of parameters to be estimated from the

data exceeds the degrees of freedom in the data. For

instance in the one-test case, we have to estimate three

variables (the true prevalence, the test sensitivity and

the test specificity), but we can only estimate a single

variable (we can compute a single unknown as we have

only one equation). This is called an underspecified

system. Unfortunately, it can be shown that the

estimation of true prevalence is always based on an

underspecified system of equations, meaning that we

invariably have to estimate more variables than the

number of equations at hand.

5. Multi-testing

A possible solution to the problem in the previous

section lies in so-called multi-testing, i.e. every animal

is subjected to different diagnostic tests.

Multi-testing as such is no direct solution to the

under-specification problem. Applying more than one

test to the same animal in fact introduces extra

variables, required to cater for the interdependence of

the different tests, i.e. an infected animal yielding a

positive test result for one serological test is more likely

than not to test positive in another serological test and

this conditional interdependence must be included in

the model (Branscum et al., 2005). Several approaches

have been advanced to try and circumvent this problem,

the most widely used being the one proposed by Hui and

Walter (1980). Several authors (Gustafson, 2005;

Johnson et al., 2000; Toft et al., 2005) have voiced

their concerns about this approach, pointing out that

several assumptions made (e.g. constancy of test

sensitivity and specificity, independence of tests) are

very strong and not necessarily correct.

Multi-testing, using Bayesian or frequentist statis-

tics, has received ample attention recently (Branscum

et al., 2005; Enoe et al., 2000; Johnson et al., 2000).

However, as pointed out by Gustafson (2005), there is

no universal ready-made solution to overcome the

problem of under-specification. There is no escaping
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from the fact that external information is required to

estimate the true prevalence and it must of course be

understood that the external information codetermines

the posterior estimates.

The choice of prior (i.e. external) information thus

assumes a central role when interpreting diagnostic test

results and every effort should be made to verify that the

prior probability distributions assigned to the different

variables are not in conflict with the data (Berkvens

et al., 2006). The method proposed in this paper

(Berkvens et al., 2006) uses a set of statistics and indices

(DIC, pD, Bayes-p) to allow the choice of prior

information in accordance with the data. This method

alerts the user if the prior information is not in

accordance with the data, permitting the choice of prior

information that is not in contradiction with the data. It

is obvious that the ultimate estimates (e.g. true

prevalence) remain the result of the data and the prior

information. This approach has been utilised in several

instances, among them the estimation of the true

prevalence of porcine cysticercosis and calf giardiasis

(Dorny et al., 2004; Geurden et al., 2004).

6. Discussion

Realising the need of external information is a first

step towards correct interpretation of diagnostic test

results. The impossibility to estimate the true pre-

valence in the absence of a gold-standard test

(sensitivity and specificity both equal to unity) without

the addition of information not present in the data must

be appreciated by everybody relying on the correct

interpretation of test results. This external information

is always at least partly expert opinion: even when solid

data exist with regards to (e.g.) test sensitivity and test

specificity, somebody must still decide that this

information is pertinent for the test results to be

interpreted. The influence of this prior external

information on the posterior estimates must also be

remembered. The Bayesian approach provides us with a

natural, intuitively correct framework that can be used

to guide us through the process of test result

interpretation. The judicious use of the appropriate

statistics and indices allow the user to sieve out

combinations of expert opinions that are in conflict with

the data. However, it must always be understood that
absence of conflict between prior information and data

is no guarantee that the best (or worse the only)

combination of priors has been selected and applied.

The final estimate remains the result of the data and the

external information.
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