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In this study, a mathematical model previously proposed for the transmission dynamics of brucellosis among bison was
mathematically analyzed. Our qualitative and quantitative findings support the general hypothesis that the infection will
vanish from the herd when the basic reproduction number R0 < 1 and will persist otherwise. A global sensitivity analysis
was conducted, and the results of the Sobol indices indicated that the rate of loss of resistance .ı/ and the recovery rate
.v/ were responsible for most of the variability in the expected number of infectious bison. On the other hand, accord-
ing to the partial ranked correlation coefficients, the density-dependent reduction in birth .�/, the mortality rate .m/, the
transmission coefficient .ˇ/, and the recovery rate .v/ exerted very high (and negative) correlations with the number of
infectious bison, whereas the rate of loss of resistance .ı/ and the calving rate .a/ exerted very high (and positive) corre-
lations with the number of infectious bison. Control measures should therefore aim at increasing the magnitude of �, m,
and v and reducing those of ı and a. In addition, experimental studies are needed to precisely estimate the rate of loss of
resistance and the recovery rate in order to increase the accuracy of the expected number of infectious bison. Copyright ©
2014 John Wiley & Sons, Ltd.
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1. Introduction

Brucellosis is a zoonotic bacterial infection capable of attacking multiple hosts. It is caused by bacteria of the genus Brucella, which
manifests in different variants in different animal species. For example, Brucella abortus is mostly associated with cattle and bison and
Brucella melitensis with sheep, goats, and humans [1, 2]. In animals, brucellosis is typically transmitted when susceptible animals come
into direct contact with tissues or discharges from infectious animals, whereas in humans, common routes of infection include direct
inoculation through cuts and abrasions in the skin or inhalation of infectious aerosols and ingestion of infectious unpasteurized milk
or other dairy products. In animals, the infection localizes in the reproductive system and typically produces placentitis followed by
abortion in the animal, usually during the last third of pregnancy, that is, between 5 and 7 months of gestation [1, 3]. It causes weight
loss, abortion, and reduction in milk production in domestic livestock and undulant fever in humans [4–6]. Brucellosis infections may
lead to serious economic consequences especially to the livestock production industries if no control measures are implemented.
Even though brucellosis is essentiality a disease of domesticated livestock, its zoonotic potentials and the possibilities of inter-species
transmission have made wildlife species an important source of or target for disease transmission.

The Yellowstone National Park (YNP), the first in the USA is one of the world’s oldest and most famous. It is known for its wildlife
and has many types of ecosystems with bison being the largest mammals. The identification of the first few cases of brucellosis in
bison from the YNP dates back to 1917 using serological tests from two bison, which had been aborted [7]. Following this, brucellosis
surveillance in the YNP has been characterized by opportunistic testing, and only occasionally has systematical testing been done [4].
Brucellosis has been virtually eliminated in domestic livestock in the USA after decades of expensive governmental disease prevention,
control, and eradication programs. The most likely source of transmission of brucellosis to humans and the risk of reintroduction of
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brucellosis into livestock is from infected populations of free-ranging bison [8]. The risk of transmission of brucellosis from bison to
cattle and other livestock species is an issue that is under hot debate. It is obvious that without informed management actions, the
bison population will continue to grow and may expand beyond the carrying capacity of the YNP [9]. Consequently, culling has been
periodically executed as a population control measure [5].

Even though brucellosis in bison in the YNP poses a significant treat to the cattle industry following the risk of its transmission
from bison to cattle, mathematical models that characterize the dynamics, determine thresholds for transmission and persistence,
and that can provide a platform for evaluating the effects of control policies such as vaccination and culling have been rarely
investigated in detail. In the wake of the recent controversial ethical and ecological debates following the culling of bison in the
YNP, there is a need for a modelling framework based on the current knowledge of the epidemiology of brucellosis among bison.
This article is based on the paper by [4] where a mathematical model for studying the epidemiology of brucellosis among bison
in the YNP was established [4]. Their model characterized the epidemiology of brucellosis in the YNP, albeit the transmission of
dynamics was not explored in detail. In addition, the influence of uncertainties around parameter values on the estimated outputs was
not investigated.

The aim of this paper was therefore to determine thresholds, equilibria, and their stability for the systems of ordinary differential
equations that describe the transmission dynamics of brucellosis in bison. In addition, a theoretical framework was provided for eval-
uating the effects of brucellosis control programs such as culling and vaccination, and a global sensitivity analysis was conducted to
determine parameter values for which the level of uncertainty has to be decreased in order to reduce the uncertainties in output
parameters [10] and also provide information that can be used to inform decision makers on which parameters to target in order to
achieve desired levels of prevention and control.

The paper is structured as follows. The simplifying assumptions used in the model building process are stated in Section 2. The
model is then developed based on the stated assumptions and on the paper by Dobson and Meagher (1996). This section also
discusses threshold parameters. Transmission dynamics of brucellosis in bison was characterized by studying the local and global
stability properties of steady-state solutions of the system as discussed in Section 3. Section 4 discusses the results of numerical sim-
ulations demonstrating steady states and the influence of control policies such as culling and vaccination. This section ends with a
discussion of the results of the global sensitivity analysis. A discussion of the main findings and some future perspectives is presented
in Section 5.

2. Model formulation

2.1. Assumptions

The transmission dynamics of brucellosis is complex, therefore, several assumptions were made to facilitate the understanding of its
transmission dynamics in a typical bison herd. The implications of relaxing one or more of these assumptions will be discussed.

� The herd consists of a total of N individuals each of the three states at any give time t

- The susceptible class, S
- The infectious class, I and
- The recovered class, R

� Transmission is via direct contact among bison and also vertically from bison to their calves.
� The life span of a bison is between 20 and 25 years [11].
� Transmission is independent of seasonal fluctuations

The dynamics are constructed over a study period of 50 years with yearly time steps. In the model developed by Dobson and
Meagher (1996), it was assumed that brucellosis increases mortality (mostly among calves) so both demography and epidemiology
were incorporated into the equations that characterize the population dynamics of brucellosis. For example, a consequence of the
infectiousness of the disease is that the fertility of the female bison will be reduced. Applying the aforementioned assumptions, using
the parameters in Table I and the flow diagram in Figure 1, the following model consisting of a set of coupled differential equations is
considered [4]:

dS.t/

dt
D .a � �N/ŒSC RC I�.1 � e/� �mSC ıR � ˇ

I

N
S

dI.t/

dt
D ˇ

I

N
SC e�.a � �N/I � .˛ CmC v/I

dR.t/

dt
D vI � .mC ı/R

dN.t/

dt
D .a � �N/N � .a � �N/.1 � �/I � ˛I �mN

S.0/ > 0, I.0/ � 0, R.0/ � 0 and N.0/ > 0

(1)
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Table I. Variables and parameter definition for System (1).
S Susceptible bison population .heads/
I Infectious bison population .heads/
R Recovered bison population .heads/
N Time varying total population .heads/
� Density dependent reduction in births .heads�1year�1/

� Reduction of fecundity in infectious bison (unit-less)
˛ Disease related death rate .year�1/

ˇ Transmission coefficient .year�1/

ı Rate of lost of resistance .year�1/

e Proportion of vertical transmission (unit-less)
v Recovery rate .year�1/

m Per capita disease free death rate .year�1/

a Birth rate .year�1/

Figure 1. Schematics of the dynamics of brucellosis in a bison herd over a 50-year period. The flow diagram represents the various states with susceptible bison
represented by S, infectious bison by I, and those that have recovered by R. The flow from one class to another is indicated with arrows, and the parameters are
explained in Table I with b D .a� �N/.

All the parameters ˛, ˇ, m, �, �, and ı are assumed to be positive constants. The first equation in System 1 describes the dynamics
of the susceptible bison population .S/. Bison enter the susceptible class through birth from the susceptible and recovered classes
at the net per capita birth rate of .a � �N/ and from the infectious class at the overall per capita birth rate of �.1 � e/.a � �N/.
The parameter, �, represents the density-dependent reduction in host births. This class is also augmented through lost of immunity by
bison already in the recovered class at the per capita rate of ı. The susceptible bison population is reduced through natural mortality
at the per capita rate of m and through infections following contact with infectious bison. Susceptible bison enter the infectious class
at a per capita rate of ˇI

N , with ˇ denoting the transmission coefficient and given by the contact rate multiplied by the probability of
infection per contact with a susceptible and I

N , the fraction of infectious bison (also known as frequency-dependent transmission). It
is worth noting that the infectious bison have a reduced birth rate modelled by �e, where e is the proportion of infected calves, and
� is the reduction in fertility due to the infection. In addition, because it was assumed in the model by [4] that brucellosis is vertically
transmitted and that the infected newborns reside in the infectious class, the vertical transmission was modelled through the term
e�.a � �N/ [4]. The infectious population is reduced through natural mortality at the per capita rate of m and also through recovery
from the infection at a recovery rate of v.

3. Model analysis

3.1. Boundedness of System (1)

The boundedness of the solutions of System (1) guarantees its mathematical and epidemiological validity [12]. In addition, it is
necessary to determine the persistence of steady states of the system. To show that System (1) is bounded, it suffices to show
that the region

� D f.S, I, R : S > 0, I � 0, R � 0, and SC IC R � N g

is positive invariant. In other words, it suffices to show that all trajectories that have their initial values in � remain in� for all positive
time. Summing up the first three equations of (1), using basic comparison theorems .�I < I because � < 1 and .a � �N/ŒSC IC R� �
.a � �N/N/ �m � N and the constraint that SC IC R D N, we have

N0.t/ D .S.t/C I.t/C R.t//0 D .a � �N/ŒSC �IC R� �mN � .a � �N/N �mN
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It immediately follows by solving the differential inequality that

N.t/ �
.a �m/N.0/e.a�m/t

�N.0/.e.a�m/t � 1/C .a �m/

Therefore, because limt!1
.a�m/

�

�
1� 1

e.a�m/t

�
C

.a�m/

e.a�m/t

D .a�m/
�

, all solutions of System (1) in finite time must satisfy SC IC R � .a�m/
�

.

All analysis of System (1) will therefore be limited to the region� given by

� D

�
.S, I, R/ : S > 0, I � 0, R � 0, and SC IC R �

.a �m/

�

�

Therefore, System (1) is mathematically and epidemiologically well posed.

3.2. Threshold parameters

In the absence of the disease, the rate of change of the population size can be expressed as follows:

dN.t/

dt
D .a � �N/N �mN

Using partial fractions and solving the numerical expression, the following solution was obtained:

N.t/ D
aN.0/e.a�m/t

�N.0/.e.a�m/t � 1/C .a �m/

It follows that limt!1 N.t/ D limt!1
.a�m/

�

�
1� 1

e.a�m/t

�
C

.a�m/

N.0/e.a�m/t

D .a�m/
�

The transmission dynamics of brucellosis in the YNP is governed by the basic reproduction number R0, which is defined as the
expected number of secondary infected bison resulting from the introduction of one infectious bison in an entirely susceptible bison
population. It is given by the product of the rate at which newly infected bison arise and the natural and disease death-adjusted average
infectious period [13].

For System (1), .R0/ was simply derived by considering that for the infection to be established in the bison population, dI
dt > 0. This

leads to the following inequalities:

ˇ
I

N
SC e�.a � �N/I � .˛ CmC v/I > 0

or

ˇ
S

SC IC R
C e�.a � �.SC IC R// � .˛ CmC v/ > 0

but for an infection free herd, I D 0, R D 0, and S D a�m
�

, therefore,

ˇ C e�.a � .a �m/ � .˛ CmC v// > 0

from which it follows that ˇ C e�m � .˛ CmC v/ > 0 or ˇCe�m
.˛CmCv/ > 1

The basic reproduction number is thus given by R0 D
ˇCe�m
.˛CmCv/ .

3.3. Rest points and their stability

3.3.1. Infection free steady state. The potential rest points for System (1) are obtained by setting the right-hand side of the first three

equations to zero. The following infection free steady state given by E0 D
�

a�m
�

, 0, 0
�

exists for all parameter values satisfying the
condition that a > m and � > 0.

The local asymptotic stability of E0 D
�

a�m
�

, 0, 0
�

is determined by the signs of the eigen values of the Jacobian matrix obtained by

linearizing System (1) around E0. The Jacobian represents the best linear approximation of System (1) at E0 and is given by

J.E0/ D

0
@ m11 m12 m13

0 m22 0
0 m32 m33

1
A
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where

m11 D �.a �m/, m12 D m�.1 � e/ � .a �m/ � ˇ, m13 D ı � aC 2m

m22 D ˇ C e�m � .˛ CmC v/, m32 D v and m33 D �.mC ı/

The eigen values of J.E0/ satisfy det.J.E0/ � �I/ D 0, which leads to the following characteristic equation:

.m11 � �/.m22 � �/.m33 � �/ D 0

This yields the following eigen values:

�1 D m11, �2 D m22 and �3 D m33

E0 is locally asymptotically stable if and only if all the eigen values are negative.

�1 < 0) �.a �m/ < 0, from which it follows that �1 < 0 iff a > m.

�2 < 0 iff ˇCe�m
.˛CmCv/ < 1 or R0 < 1.

�3 < 0 by observation.

Therefore, E0 is locally asymptotically stable iff R0 < 1 and a > m.
The global stability of the infection-free steady state, E0, is established in the following proposition:

Proposition 1.1
All solutions in the region� approach the infection-free equilibrium E0 for R0 � 1.

Proof
Consider the Lyapunov function: W : � ! R, W D Œ.S�S0/CICR�2

2 C .1��/I2

2e� C .˛C2m/R2

2v , which is well-defined and continuous in �.

W=0 at .S, I, R/ D
�

a�m
�

, 0, 0
�

and positive if .S, I, R/ ¤
�

a�m
�

, 0, 0
�

. Also, for any solution �.t/, W.�.t0// � W.�.t1// for t1 > t0, where

�.tj/ 2 W..S0, I0, R0// n .s0, i0, r0/. The Lyapunov derivative of W is given by

PW D Œ.S � S0/C IC R�ŒS0 C I0 C R0�C
.1 � �/II0

e�
C
˛RR0

v

which expands to

PW D Œ.S � S0/C IC R�Œ.a � �N/N � .a � �N/.1 � �/I � ˛I �mN�C

�
.1 � �/

e�

� �
ˇI2S

N
C e�.a � �N/I2 � .˛ CmC v/I2

�

C

�
˛IR �

.mC ı/

v
R2

�

Substituting a D �S0 Cm, we have that

PW D Œ.S � S0/C IC R�Œ.��N..S � S0/C IC R/C �.1 � �/I..S � S0/C IC R/ �mI.1 � �/ � ˛I�

C
.1 � �/I2S

e�N
� �.S � S0/.1 � �/I

2 Cm.1 � �/I2 � �.1 � �/.IC R/I2 �
.˛ CmC v/.1 � �/I2

e�
C Œ˛IR �

˛.mC ı/

v
R2�

which simplifies to

PW D �Œ.S � S0/C IC R�2Œ�.SC R/C ��I� � �I.IC R/ � �.S � S0/ �m.S � S0/I.1 � �/ �m.IC R/I.1 � �/

C
.1 � �/I2S

e�N
� �.S � S0/.1 � �/I

2 Cm.1 � �/I2 � �.1 � �/.IC R/I2 �
.˛ CmC v/.1 � �/I2

e�
C

�
˛IR �

˛.mC ı/

v
R2

�

Further simplification yields that

PW D �Œ.S � S0/C IC R�2Œ�.SC R/C ��I� � .S � S0/IŒ˛ Cm.1 � �/� �mIR.1 � �/ � I2Œ˛ C �.S � S0/.1 � �/C �.1 � �/.IC R/�

�
˛.mC ı/

v
R2 �

.1 � �/I2

e�N
Œ.˛ CmC v/N � ˇS�

Adding and subtracting e�mS.1��/I2

e�N to the right-hand side and writing in terms of R0, it follows that

PW D �Œ.S � S0/C IC R�2Œ�.SC R/C ��I� � .S � S0/IŒ˛ Cm.1 � �/� �mIR.1 � �/ � I2Œ˛ C �.S � S0/.1 � �/C �.1 � �/.IC R/�

�
˛.mC ı/

v
R2 �

.1 � �/I2S

e�N

�
.˛ CmC v/.IC R/

S
C .˛ CmC v/.1 � R0/

�
�

e�mS.1 � �/I2

e�N
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If R0 � 1, then PW � 0. In addition, we note that PW D 0 iff S D S0, I D 0, and R D 0.
Therefore, the largest compact invariant set in f.S, I, R/ 2 � : PW D 0g is the singleton fE0g, where E0 is the disease-free equilibrium. It

thus follows from the Lyapunov–Lasalle [14] theorem that E0 is globally asymptotically stable in� and so every trajectory of System (1)
approaches the infection-free equilibrium for R0 � 1. E0 is the unique steady state for System (1) when R0 � 1.

3.3.2. Endemic steady state. When the infection-free steady state is locally or globally asymptotically unstable, the system may settle
at an endemic equilibrium. For System (1), the endemic equilibrium is given by Ee D .Se, Ie, Re/, where Se, Ie, and Re were obtained as
follows: from the second equation of (1), it follows that

0 D
ˇ

N
SC e�.a � �N/ � .˛ CmC v/ or Se D

Ne

ˇ
Œ.˛ CmC v/C e�.�Ne � a/�

Next, from the third equation of System (1), we have that Re D
vIe

.mCı/ .
Using the equality, Ne D Se C Ie C Re and substituting the expression for Se, Ie, and Re, we have that

Ie D
Ne.mC ı/

ˇ.mC ı C v/
Œˇ � .˛ CmC v/ � e��Ne C e�a�

To derive conditions for the existence of the endemic equilibrium, we start by observing that

� Se > 0 iff Ne >
a
�

.

� Ie > 0 iff ˇ > .˛ CmC v/C e��Ne � e�a from which it follows that R0 > 1.

It therefore follows that Ee exists iff Ne >
a
�

and R0 > 1.
The local and global asymptotic stability of this endemic rest point is given as follows:
For Ee, the variational (stability) matrix of System (1) is given by

J.Ee/ D

0
@ m11 m12 m13

m21 m22 m23

0 v m33

1
A

where m11 D �
h
�.Se C Re C Ie�.1 � e//C .�Ne � a/CmC ˇIe.IeCRe/

N2
e

i
, m12 D �

h
�.Se C Re C Ie�.1 � e//C �.1 � e/.�Ne � a/C

ˇSe.SeCRe/

N2
e

i
, m13 D � ŒNe C Re� � � ŒSe C Ie�.1 � e/�C .aC ı/C ˇSeIe

N2
e

, m21 D
Ie.˛CmCv/

Ne

h
R0 � 1C e�.a�m/

˛CmCv

i
, m22 D �

h
ˇSeIe

Ne
C e�Ie

i
,

m23 D �Ie

h
ˇSeIe

Ne
C e��

i
, m33 D �.ı Cm/

The eigen values of J.Ee/ satisfy: det.J.Ee/ � �I/ D 0, from which the following characteristic equation is obtained:

0 D �3 C A1�
2 C A2� C A3

where

� A1 D �m11 �m22 �m33

� A2 D m11m33 Cm11m22 Cm22m33 �m12m21 � vm23 and

� A3 D m12m21m33 �m11m22m33 � vm13m21 C vm11m23

According to the Routh–Hurwitz criterion [15], Ee is locally asymptotically stable iff the following three conditions hold:

1. A1 > 0

2. A3 > 0 and

3. A1A2 > A3

� For A1,

- m11 < 0 iff Ne >
a
�

- m22 < 0 iff Ne >
a
�

and R0 > 1

- m33 < 0

Therefore A1 > 0 iff Ne >
a
�

and R0 > 1
� For A3,

- vm11m23 > 0 because m11 < 0 and m23 < 0

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2015, 38 3818–3832
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- m12m21m33 > 0 iff Ne >
a
�

and R0 > 1 because m12 < 0, m21 > 0, and m33 < 0

- �m11m22m33 > 0 because m11 < 0, m22 < 0 and m33 < 0

- �vm13m21 > 0 because m21 > 0 and m13 < 0 .m13 < 0 iff R0 > 1/

� For A1A2 � A3 D m11m12m21 � m2
11m22 C m12m21m22 � m11m2

22 � m2
11m33 � 2m11m22m33 � m2

22m33 � m11m2
33 � m22m2

33 C

m22m23v C m23m33v C m13m21v

- vm33m23 > 0 because m33 < 0 and m23 < 0

- m22m23v > 0 because m22 < 0 and m23 < 0

- m11m12m21 because m11 < 0, m12 < 0, and m21 > 0

- �m2
11m22 > 0 and�m22m2

33 because m22 < 0

- m12m21m22 > 0 because m22 < 0, m12 < 0, and m21 > 0

- �m11m2
22 and�m11m2

33 because m11 < 0

- �m2
11m33 > 0 and�m2

22m33 because m33 < 0

- �2m11m22m33 > 0 because m11 < 0, m22 < 0, and m33 < 0

- m13m21v < 0 because m13 < 0 and m21 > 0.

The term m13m21v was therefore combined with other terms such as m11m12m21 and m12m21m22. The combined expression was
expanded out using the Expand[] function in Mathematica into 96 terms, 41 of which were negative. Pairing negative and positive
terms in this expression yielded a positive combined expression iff R0 > 1 and Ne >

a
�

.

It was therefore concluded that the endemic steady state Ee is locally asymptotically stable provided that R0 > 1 and Ne >
a
�

.
The global stability of the endemic steady state Ee is established in the following proposition:

Proposition 1.2
All solutions in the region� approach the infection-free equilibrium Ee for R0 � 1.

Proof
Consider the Lyapunov function: V : �! R, V D Œ.S�Se/C.I�Ie/C.R�Re/�

2

2 C .1��/
e�

h
I � Ie � Ie � ln

�
I

Ie

�i
C ˛.R�Re/

2

2v

which is well-defined and continuous in�. V=0 at .S, I, R/ D .Se, Ie, Re/ and positive if .S, I, R/ ¤ .Se, Ie, Re/. Also for any solution �.t/,

V.�.t0// � V.�.t1// for t1 > t0, where �.tj/ 2 V..Se, Ie, Re// n .se, ie, re/. The Lyapunov derivative of V is given by PV D Œ.S � Se/C .I �

Ie/C .R � Re/�ŒS0 C I0 C R0�C .1��/
e�

h
.I�Ie/I0

I

i
C ˛.R�Re/R0

v , which expands to

PV D Œ.S � Se/C .I � Ie/C .R � Re/�Œ.a �m/N � �N2 � .a � �N/.1 � �/I � ˛I�

C
.1 � �/.I � Ie/

e�

�
ˇS

N
C e�.a � �N/ � .˛ CmC v/

�
C
˛.R � Re/

v
ŒvI � .mC ı/R�

This simplifies to

PV D Œ.S � Se/C .I � Ie/C .R � Re/�Œ.a �m/N � �N2 � .a � �N/.1 � �/I � ˛I�

C
.1 � �/.I � Ie/

e�

�
ˇS

N
C e�.a � �N/ � .˛ CmC v/

�
C ˛.R � Re/I �

˛.mC ı/

v
.R � Re/R

Substituting the following equalities:

.˛ CmC v/ D ˇ
Se

Ne
C e�.a � �Ne/

.mC ı/ D v
Ie

Re

.a �m/ D �Ne C .a � �N/.1 � �/
Ie

Ne
C ˛

Ie

Ne

we have that

PV D Œ.S � Se/C .I � Ie/C .R � Re/�

�
�NeNC .a � �N/N.1 � �/

Ie

Ne
C ˛N

Ie

Ne
� �N2 � .a � �N/.1 � �/I � ˛I

�

C
.1 � �/.I � Ie/

e�

�
ˇS

N
C e�.a � �N/ � ˇ

Se

Ne
� e�.a � �Ne/

�
C ˛.R � Re/I �

˛Ie

Re
.R � Re/R
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which simplifies to

PV D .N � Ne/

�
��N.N � Ne/C

˛

Ne
.Ie.N � Ne/ � Ne.I � Ie//C

.1 � �/

Ne
.aIe.N � Ne/ � aNe.I � Ie/C �NNe.I � Ie/

�

C
ˇ.1 � �/.I � Ie/

e�NNe
.Ne.S � Se/ � Se.N � Ne// � .1 � �/�.I � Ie/.N � Ne/C ˛.R � Re/.I � Ie/ � ˛

Ie

Re
.R � Re/

2

Further simplifications using the equality, .N � Ne/ D .S � Se/C .I � Ie/C .R � Re/ yielded that

PV D �.N � Ne/
2

�
�N �

Ie

Ne
.˛ C a.1 � �//

�
� .N � Ne/.I � Ie/

�
˛ C .1 � �/.a � �N/C .1 � �/C

ˇ.1 � �/Se

e�NNe
�
ˇ.1 � �/

e�N

�

� ˛
Ie

Re
.R � Re/

2 � .I � Ie/
2 ˇ.1 � �/

e�N
� .I � Ie/.R � Re/

�
ˇ.1 � �/

e�N
� ˛

�

PV D 0 iff �NNe
Ie

> .˛ C a.1 � �//, ˛ C .1 � �/a > .1 � �/�NC ˇ.1��/
e�N and ˇ.1��/

e�N > ˛. Combining these inequalities and substituting

the expression for Ie led to the conclusion that R0 � 1. We also noted that PV D 0 iff S D Se, I D Ie, and R D Re.
Therefore, the largest compact invariant set in

˚
.S, I, R/ 2 � : PSe D 0

�
is the singleton fEeg, where Ee is the endemic equilibrium. It

thus follows from the Lyapunov–Lasalle theorem [14] that Ee is globally asymptotically stable in�, and so every trajectory of System (1)
approaches the endemic equilibrium for R0 � 1. Ee is the unique steady state for System (1) when R0 � 1.

4. Numerical simulations

Numerical simulations were performed using the deSolve package in R [16](Appendix B) to illustrate some of the qualitative analytical
findings.

4.1. Parameter values

The parameter values used for the simulations were obtained from published reports and articles on bison in natural parks such as those
of Dobson [4]. For example, the calving rate was found to range between 0.42 and 0.82 [4, 17, 18]. The density-dependent reduction
in host births .�/ was determined by assuming that the bison population may equilibrate at the carrying capacity of 4500 heads [4].
Brucellosis is not known to significantly increase the mortality in cows. However, because this model assumed that the infectious calves
move directly into the infectious compartment (I), this compartment was associated with a low infection-related mortality rate .˛/
following death of infectious calves. The natural mortality rate was defined as the reciprocal of the life span of a bison determined to
be between 15 and 25 years [4, 11]. Once infected, bison may stay infectious throughout their life span. However, they were assumed to
contribute significantly to the transmission dynamics only during the first 2 years following infection [4]. For all other parameter values,
possible values were presented in Table II.

4.2. Simulation of the infection-free and endemic steady states

Figure 2(a) and 2(b) demonstrate the convergence of the solution profile to the infection free rest point. The estimated basic reproduc-
tion number for these settings was less than unity, that is, R0 D 0.12 and R0 D 0.95, respectively. The plots indicated that an increase
in the basic reproduction number from 0.12 to 0.95 had the effect of slightly increasing the time at which the infectious population
reaches zero. In addition, after varying the initial values further away from the infection free equilibrium, the solutions still converged to
the infection free equilibrium supporting our proposition of global stability (Figure 3(a) and 3(b)). Endemicity is depicted in Figure 4(a)
and 4(b) with values of R0 being 3.3 and 10.7, respectively. In this case, an increase in the basic reproduction number had the significant

Table II. Suggested parameter
values for System (1).

Parameter Value Source

� 0.00004 [4]
� 0.5 [4]
˛ 0.05 [4]
ˇ 0.05–10 [4]
ı 0.2 [4]
e 0.9 [4]
v 0.5 [4]
m 0.04–0.07 [4, 11]
a 0.42–0.82 [4, 17, 18]
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Figure 2. Numerical simulation of the time evolution of the infection free steady state. The parameters used are described in Table II. The initial values were:
.S0, I0, R0/ D .4050, 450, 0/.

Figure 3. Numerical simulation of the time evolution of the infection free steady state. The parameters used are as described in Table II. The initial values were
.S0, I0, R0/ D .1000, 3500, 0/.

effect of reducing the number of susceptible bison and increasing the number of infectious bison. It was noted that no matter which
starting values were chosen for .S0, I0, R0/ (with S0 > 0, I0 > 0, and R0 � 0/, the trajectories converged to the endemic equilibrium
(Figure 5(a) and 5(b)).

4.3. Global sensitivity analysis

A global sensitivity analysis was conducted to determine the influence of uncertainties in parameter values on the variability of the
expected number of infectious bison .OI/ at given time points. There are several measures that can be used to determine global sen-
sitivity of parameters; those that are based on sampling and those that are based on decomposition of variances. The most popular
sampling-based measure is the partial ranked correlation coefficient (PRCC), whereas the most commonly used variance-based meth-
ods are the Sobol first order and total effect indices [10, 19]. The PRCC is a robust sensitivity measure for nonlinear but monotonic
relationships between model parameters and model outputs and can be used to determine the influence of an increase or decrease
in parameter values linearly discounting the effects of the uncertainty over the rest of the parameters of the model [20–23]. It there-
fore provides information that can be used to inform decision makers on which parameters to target in order to achieve desired levels
of prevention and control. On the other hand, the variance-based Sobol indices indicate parameters whose uncertainty influences the
variability of the expected number of infectious bison .OI/. They can therefore indicate parameter values for which the level of uncer-
tainty has to be decreased through field studies or tailored experiments in order to reduce the uncertainties in output parameters [10].
The Sobol first-order index gives a measure of the direct effect of a model parameter on the variation in OI, whereas the total-order index

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2015, 38 3818–3832

3
8

2
6



E. ABATIH ET AL.

Figure 4. Numerical simulation of the time evolution of the endemic steady state a D 0.64, m D 0.04, � D 0.00004, v D 0.5, � D 0.5, e D 0.9, ı D 0.2, and
˛ D 0.005. The initial values were .S0, I0, R0/=(4050,450,0).

Figure 5. Numerical simulation of the time evolution of the endemic steady state a D 0.64, m D 0.04, � D 0.00004, v D 0.5, � D 0.5, e D 0.9, ı D 0.2, and
˛ D 0.005. The initial values were .S0, I0, R0/=(500,1500,0).

describes the share of the output variation that is related to each input factor. It includes the direct effect as well as interactions among
the other parameters [24]. As suggested by Marino et al. 2008 [10], because the two methods measure different aspects of the model,
the most optimal strategy to achieving a complete and informative sensitivity analysis is to estimate both indices. The distributions of
the parameters were based on the Triangular distribution. The mode of the Triangular distribution in each setting was the value of the
parameter (Table II), and the maximum and minimum values were arbitrarily chosen.

The Sobol indices were consistently high for the rate of loss of resistance, ı and the recovery rate, v for the three time points con-
sidered indicating that these parameters were very sensitive to variabilities in the expected number of infectious bison. All the other
parameters had moderate (for a/ to relatively minor impact on the variability of the expected number of infectious bison (Table III). The
Sobol indices appeared to vary along the three times point. The Sobol first-order indices for all parameters gave a sum of 1.192 mean-
ing that the output does not seem to be affected by interactions among the parameters. The total effect indices for ı and v were again
consistently higher compared to those of the other parameters.

The parameters a, �, ı, and v were found to consistently exhibit high correlations across the three time points, whereas ˇ and m
were found to exhibit moderate correlations with OI. An increase in the values of �, v, or m will lead to a corresponding decrease in the
estimated number of infectious bison . OI /. On the other hand, decreasing the value of ı, ˇ, or a will lead to a corresponding decrease
in the value of OI (Table IV).

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2015, 38 3818–3832

3
8

2
7



E. ABATIH ET AL.

Table III. First-order and total-effect sensitivity indices for expected number of infectious
bison . OI / at three time points (t D 10, 25, and 50).

First order Total effects

Parameter t D 10 t D 25 t D 50 Parameter t D 10 t D 25 t D 50

ˇ 0.037� 0.024 0.026 ˇ �0.001 0.024 0.003
a 0.209� 0.215� 0.141� a 0.079 0.029 0.078
m 0.011 0.031 0.132� m 0.010 0.044 0.119�

� 0.217� 0.070 0.037 � 0.019 0.061 0.129�

v 0.408� 0.412� 0.303� v 0.441� 0.309� 0.327�

� 0.009� 0.005� 0.007� � �0.008� �0.005� �0.007�

ı 0.290� 0.505� 0.278� ı 0.249� 0.327� 0.452�

˛ 0.007� 0.007� 0.007� ˛ �0.007� �0.006� �0.007�

e 0.008� 0.007� 0.006� e �0.008� �0.007� �0.006�

t, time;
* Significant at 5% level; the negative values for these indices indicate that the analytical
sensitivity indices are close to zero (i.e., for unimportant factors)[19].

Table IV. Partial rank correlation coefficients
(PRCCs) between each model parameter and
the estimated number of infectious bison . OI /
at three time points (t D 10, 25, and 50) using
11000 replications.
Parameter t D 10 t D 25 t D 50

ˇ 0.529� 0.488� 0.450�

a 0.842� 0.784� 0.711�

b �0.288� �0.578� �0.756�

� �0.788� �0.699� �0.639�

v �0.943� �0.915� �0.881�

� �0.038� �0.013� 0.035�

ı 0.919� 0.935� 0.901 �

˛ �0.008 �0.0138 �0.016
e 0.021� �0.017 �0.010

t,time;
*Significant at the 5% level.

4.4. Control of bovine brucellosis in bison

The control of diseases in wild life is very expensive, and therefore, the evaluation of control strategies based on dynamic models is the
key to eradicating the infection. Culling and vaccination coupled with good herd management are common methods that have been
used to reduce the size of susceptible animals in a population to levels below the threshold for transmission [4, 25]. The choice of which
control strategy is most effective depending on the disease and its epidemiological characteristics. For most directly transmissible
diseases, culling or vaccination alone has been shown to be more appropriate, whereas for others, a combination of both methods is
the most optimal strategy [25]. For our model, culling is related with mortality rate, birth rate, density-dependent reduction in birth rate,
loss of resistance, and the transmission coefficient whereas vaccination will directly influence the recovery rate and the transmission
rate.

4.4.1. Culling. Even though the simplest control measure is that of regularly culling host animals, it has been the subject of much
recent debates. If a proportion � of infectious bisons is culled each year, replacing m with mC � of System (1) will yield the following
modified threshold for the eradication or persistence of disease [26]:

Rc D
ˇ C e�m

.˛ CmC � C v/

For an infection free herd, Rc < 1 or ˇCe�a
.˛CmC�Cv/ < 1 from which it follows that the yearly culling rate that will eliminate the infection

�c D .ˇ C e�m/ � .˛ CmC v/.
The results of the numerical simulations in Figure 6 reflect the effects of culling on the number of bison in each disease state in the

population. The culling threshold for eradication of the infectious bison population was 1.3 for the given set of parameters. Below this
value, the infection persists (Figure 6(a)), whereas above this value, the infection vanishes (Figure 6(b)).
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Figure 6. Numerical simulations of the effect of culling. Model parameter values are a D 0.64, m D 0.04, � D 0.00004, v D 0.5, � D 0.5, e D 0.9, ı D 0.2, and
˛ D 0.005. The initial values were .S0, I0, R0/=(4050,450,0).

4.4.2. Vaccination. The RB51 vaccine has been evaluated for its potential use in the eradication of brucellosis in bison herds and found
to offer protection against abortion and vertical transmission [27, 28]. Because this vaccine has not been fully implemented in the YNP,
its effects are evaluated based on numerical simulations. Suppose that a proportion, p, of the susceptible bison population is vaccinated
yearly with a vaccine that offers only temporal immunity. In addition, let’s assume that the vaccine is given to a proportion q of the
newborns. Defining a new class to represent the vaccinated sub-population, U, it follows that a fraction of the newborns, q, will move
into the vaccinated class, whereas the remaining proportion .1 � q/ will stay in the susceptible class. In addition, a portion p of the
susceptible population will move into the vaccination class per year. Finally, after a period 1=ı2, vaccinated bison lose their immunity
to become susceptible again. The vaccine is assumed to be 100% effective and to have no effect on the infectious bison. A modified
version of System 1 that incorporates the vaccinated fraction of the population is given as follows [29, 30]:

dS.t/

dt
D .1 � q/.a � �Nu/ŒSC UC RC I�.1 � e/� �mSC ıR � ˇ

I

Nu
SC ı2U � pS

dI.t/

dt
D ˇ

I

Nu
SC e�.a � �Nu/I � .˛ CmC v/I

dR.t/

dt
D vI � .mC ı/R

dU.t/

dt
D q.a � �Nu/ŒSC UC RC I�.1 � e/�C pS � .mC ı2/U

dNu

dt
D .a � �Nu/Nu � .a � �Nu/.1 � �/I � ˛I �mNu

S.0/ > 0, I.0/ � 0, R.0/ � 0, U.0/ � 0 and Nu.0/ > 0

(2)

where q and p are additional constants and now Nu D SC ICRCU. The basic reproduction number under vaccination was qualitatively
derived using the Next Generation matrix approach [31].

dI.t/

dt
D ˇ

I

Nu
SC e�.a � �Nu/I � .˛ CmC v/I

dU.t/

dt
D q.a � �Nu/ŒSC UC RC I�.1 � e/�C pS � .mC ı2/U

(3)

This approach starts out by considering the differential equations for the two infected compartments I and V (System (3)). From these
equations, entries for the two matrices F and V were derived. The entries of F represent the rate of acquisition of new infections
into the two compartments and those of V , the transfer rate of individuals in and out of the compartments. F and V were obtained
as follows:

F D
	
ˇ I

Nu
SC e�.a � �Nu/I

q.a � �Nu/.I�.1 � e/



and V D

	
.˛ CmC v/I

.mC ı2/U � q.a � �Nu/ŒSC UC R� � pS
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Figure 7. Numerical simulations of the effects of vaccination. Model parameter values are a D 0.64, m D 0.04, � D 0.00004, v D 0.5, � D 0.5, e D 0.9,
delta D 0.2, ı2 D 0.005, and ˛ D 0.005.

The derivatives of F and V denoted by F and V, respectively, evaluated at the infection free steady state Ev0 yields

F D

 
ˇ.ıCm.1�q//
.ıCmCp/ C e�m 0

pq.1 � e/m 0

!
and V D

	
.˛ CmC v/ 0

q.a �m/ .mC ı2/C q.a � 2m/




The inverse of V is given by

V�1 D
1

.˛ CmC v/.mC ı2 C q.a � 2m//

	
.mC ı2/C q.a � 2m/ 0

�q.a �m/ .˛ CmC v/




The next generation matrix is calculated as follows:

FV�1 D

 
ˇ.ıCm.1�q//

.ıCmCp/.˛CmCv/ C
e�m

.˛CmCv/ 0
pq.1�e/m
.˛CmCv/ 0

!

The vaccination reproduction number Rv is given by the spectral radius of the next generation matrix, that is, Rv D �.FV�1/. It
follows that

Rv D
ˇ.ı Cm.1 � q//

.ı CmC p/.˛ CmC v/
�

ˇ

.˛ CmC v/
C

ˇ C e�m

.˛ CmC v/
D R0 �

ˇ.pCmq/

.ı CmC p/.˛ CmC v/

It can be clearly seen from this expression that Rv factored out into R0 and a component depended on the vaccination promotion.
An alternative method for deriving the basic reproduction number was through linearization of System 2 around the infection free

steady state (Appendix A).
Numerical simulations illustrating the effects of vaccination are shown on Figure 7. Comparing the simulation results with those of

the model without vaccination (Figure 4), it was observed that vaccinating the susceptible bison at a yearly rate of 0.13 and 25% of the
newborns each year, the infection vanished from the herd after 30 years. The vaccination reproductive number in this case was less
than unity .Rv D 3.3 � 2.64 D 0.66/(7(a)). Increasing the value of the value of the transmission rate parameter from 1.8 to 5.8 and
also the vaccinated fractions from 0.13 and 0.25 to 0.18 and 0.42, respectively, caused the infection to persist for a longer period (up to
45 years). The vaccination reproductive number was less than unity .Rv D 10.7 � 9.74 D 0.96/(7(b)).

5. Discussion

In this study, a mathematical model previously proposed for studying the epidemiology of brucellosis was qualitatively and quantita-
tively examined. Threshold parameters were derived for the system and its variants. Using numerical simulations, it was shown that
for all systems, the infection vanished when the basic reproduction number was below unity and persisted otherwise. However, for
the model with vaccination, the basic reproduction numbers were smaller even for very high magnitudes of the transmission rate
parameter as compared with those of the simple model without vaccination.
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The results of the global sensitivity analysis using the Sobol indices indicated that the rate of loss of resistance and the recovery rate
caused most of the variability in the expected number of infectious bison for the three different time points evaluated. An increase in
the precision of the estimates of these parameters will lead to more accurate estimations of the expected outputs of the system. Epi-
demiological studies are therefore needed to estimate these parameters under field conditions. On the other hand, the PRCCs indicated
that the density-dependent reduction in birth rate, �, the loss of resistance, ı, the recovery rate, v, and the calving rate, a, exhibited very
high correlations .jPRCCsj > 0.5/with OI, the estimated number of infectious bison. The rate of loss of resistance, the birth rate, and the
transmission coefficient can be decreased by the application of control policies such as vaccination or the removal of bison that have
recovered from the infection. This way, fewer recovered animals will move to the susceptible class. The mortality rate can be increased
by culling susceptible and infectious bison. This has the effect of reducing the total population size to levels too low to sustain the
infection.

The transmission of brucellosis among bison in a herd results from the large amount of bacteria shed in the environment following
an abortion or parturition. However, most models for brucellosis have considered a direct transmission route between susceptible
and infectious animals [32, 33]. The parameter, ˇ, which quantified the direct transmission between infectious and susceptible bison
appeared to have a moderate correlation (0.5 on average) with the estimated number of infectious bison. This is an indication that the
assumption of a direct transmission route for brucellosis needs to be re-evaluated. In addition, this may be an indication that modeling
the transmission as frequency dependence needs to be re-evaluated as well. This comes as a result of the indirect transmission nature
of brucellosis following the discharge of large amounts of bacteria in tissues after calving or abortion. A larger number of infectious
bison within a fixed area will mean that more bacteria will be shed into the environment thus increasing the probability of picking
up bacteria and getting infected. However, it has been demonstrated by Dobson [4] that frequency-dependent transmission is to be
preferred as it produced levels of prevalence that closely resembled those observed in serological surveys. A study which couples both
the direct and indirect transmission routes for brucellosis and which compares frequency and density-dependent transmissions is in
progress.

Our model was based on several simplifying assumptions: the infectious animal population was not partitioned into abortives and
non-abortives. However, this distinction is important because time to abortion and time to full term birth are different [32]. It was also
assumed that calves are immediately susceptible to the disease and can get infected and move into the infectious class. However,
it is not clear if all infectious bison calves end up as infected female adult bison or if the infection causes sterility. For the sake of
clarity, some other authors have assumed that calves attain sexual maturity before being considered susceptible [3]. The investigation
of these assumptions is the topic of work in progress. Most recently, Aïnseba et al. (2009) proposed a model for ovine brucellosis,
which incorporated both direct and indirect transmission mechanisms. However, the model did not distinguish between abortive and
non-abortive infectious sheep and newborns that were considered to be directly susceptible [34].

Two main control strategies, culling and vaccination, were investigated for their role in the eradication of brucellosis in bison herds.
It was observed that culling infectious bison at the hypothetical yearly rate of 1.5 led to the eradication of the infection with the
susceptible population growing to the carrying capacity of the YNP. Because the sensitivity analysis indicated that direct transmission
plays a less significant role, on the dynamic of bison, indirect transmission following shedding of bacteria in the environment could
be the main transmission route. A demonstration of the importance of indirect transmission will mean that culling has no effect on
the transmission of brucellosis in the face of indirect transmission because even if infected bison are culled or removed from the herd
infectious units may stay in the environment. Vaccination was observed to decrease the basic reproduction number by a quantity
that depended on the vaccination fraction of susceptible bison and newborns. Because test and slaughter is very costly and hence an
infeasible option for brucellosis in bison herds, culling of bison that attempts to leave the park combined with other control measures
such as vaccination and good herd management could be a more plausible control option.

The transmission dynamics in this study were of a general nature with limited references to the YNP. The model can be easily adapted
to any natural park with free ranging bison. To effectively guide public health policy and public health decision making, the model and
parameter values would need to be validated using data from National parks.
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